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ABSTRACT

A cascade concept is introduced. It decomposes a velocity fluctuation
into a group of modes of large scales and a group of modes of smaller scales.
The mutual interaction is responsible for the transfer of energy across the
spectrum. The concept of cascade has the purpose of providing a mean of
closure of the hierarchy of equations common to nonlinear systems. A new
expression for the eddy viscosity is obtained, differing from that proposed
by Heisenberg. It has the advantage of determining the.KOlmogorOffgiaw;in
the inertial subrange with an analytical numerical coefficient, and of cal-
culating the spectral law in the viscous subrange. The latter law provides a
cutoff in the spectrum and the¢refore secures the convergence of any high order
velocity derivative. The cutoff follows the viscous subrange, and does not

follow the inertial law, as predicted by some theories.



1. INTRODUCTTION
In the equilibrium range, the development of the spectral distribution

energy F(k) can be described by the following equation:
k.
S (k) 4_zy/0ué kZF(k) = ¢
O
where v is the molecular kinematic viscosity,
z/éa(ﬁ,ézl_: = R’
o

is the vorticity function, and vRQ is the dissipation function. Further e

is the total energy dissipation
o
¢ = YR (k=12

Finally S(k) is the transfer function arising from the nonlinearity, and
describing the flux of energy across the spectrum, i.e. the rate at which
the portion of the spectrum with wave number less than k trangfers energy to

the remainder of the spectrum. By definition

S)=0, Slw)=o

this means that the nonlinear interactions transfer energy between Fourier
components without dissipating energy. The determination of the structure
of the transfer function is the crucial aim of any spectral theory of turbu-
lence. There are the following phenomenological theories:

(1) He,isenberg'sl’2 theory takes

Stk) = % R°
where

Yy = Wi/i% (F//eS)Jz
R
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is an eddy viscosity.

(i1) Obukhov's3 theory postulates o
S = ot R°= [ ok F
(iii) Pao4 and Kovasznay's5 theory éﬁoposes

S = tonsd a(.z’7'/5/9/;”_/5/:)0,L
Pao4 uses n = 1, and Kovasznay5 uses n = 3/2. Tennekes6 notes that the case
n = 3/4 gives the Heisenbergl’2 law k_7 in the viscous subrange.

The theories (i) and (ii) are based on the idea that the small eddies

act like an eddy viscosity on the big eddies. The theory (iii) has no simple

physical analogue.



3A. M. Obukhov, C.R. Acad. Sci. USSR 32, 19 (1941); Izv, Akad, Nauk, USSR,

Ser. Geogr. i. Geofiz. 5, 453 (1941), (translation issued by Minigtry of
Supply, United Kingdom, as P21109T).

4Y. H. Pao, Phys. Fluids 8, 1063 (1965).

5L. S. G. Kovasznay, J. Aeron Sci. 15, 745 (1948).

6H, Tennekes,Phys. Fluids 11, 246 (1968).
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All the 3 theories agree with the Kolmogoroff7 law of k_S in the inertial

subrange, as required by dimensional conditions. The Kolmogoroff7 law is also
confirmed by OnsagerS’g and von Weizsicker'?,

As mentioned above, the solution k_7 of Heisenbergl’2 bears the difficulty
of a divergence in the mean square velocity derivatives of arbitrarily high
orders. Pao's4 solution finds an exponential decay as a tail following the
k_s/3 inertial law. The exponential cutoff is a superior choice, but one
rather expects that a cutoff should be attached to the viscous law. The

4/

exponential tail predicted by Pao4 varies as exp (-k 3) rather than exp

(—kz), as suggested by Batchelorll, Saffman12 and Novikovls. In supplementing

13,14,15 have been

the above phenomenological theories, several physical models
advanced attempting the formulation of a dynamics of the interactions. The
theories are confronted with several difficult questions:

(a) To devise an approximation of closure of the hierarchy of equations
inherent in any nonlinear system.

(b) To formulate the dynamics of interactions between the modes,
and to derive the transfer function.

(¢) To derive the structure of the eddy viscosity, as a transport
property representing the statistical effect of fluctyations of small scales
upon larger omnes.

(d) To derive the inertial and viscous laws as solutions of the
equation of energy spectrum.

(e) To show the existence of an eprnential tail, arising from the
viscous cutoff of the spectrum at infinitely large wave numbers.

If those fundamental questions, which enter in the physical models,

cannot find their answers from the phenomenological theories (i) - (iii),

the recent analytical theories of turbulence can also not lend much help.
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In a recent survey of such theories, Orszag16 commented thatrthey are based on
mostly unsatisfactory closure approximations, and therefore often fail to
predict even a proper Kolmogoroff7 inertial range spectrum. The extension of
these theories to more complicate types of turbulence, e.g. plasma turbulence
and magnetohydrodynamic turbulence will involve even greater difficulties.

On the other hand, the dimensional considerations upon which all the phenomeno-
logical theories are based, are too ambiguous tq be fruitful for any such
extension. Therefore we propose a new cascade approximation, which provides

a simple closure procedure in the interaction of modes, withouyt the mathematical
involvement of most analytical theories, and, at the same time, can describe .in
sufficient detail the dynamics of the nonlinear transfer process. The transfer
function thus determined entails a viscous cutoff at arbitrarily large wave
numbers of the spectrum . Let us review the basic questions to be gmphasized:
The question (a) of introducing the cascade approximation as a basis of closure
is discussed in Sections 2 and 3, and the question (b) of formulating the
transfer function is treated in Section 4. The question (c) on the structyre
of the eddy viscosity needs again a closure based upon the cascade concept and
is treated in Sections 5 and 6. The questions (d) and (e) on the solutions of
the spectral laws are discussed in Sections 7 and 8. The viscous tail of the
spectrum has a cutoff which is derived in Section 8. Finally a comparison of

the present cascade theory with other theories is.made in Section 9.

2. CASCADE DECOMPOSITION

Consider an incompressible turbulent fluid, and assume it to be homogene-
ous and isotropic. The dynamical equations governing the varjable velocity
u and pressure p with a constant density p are the equation of Navier - Stokes

and the equation of continuity:



16Stevens A, Orszag, Some Insights into the Analytical Theories of Turbulence,

in Abstract Symposium on Turbulence, Seattle, Washington, 23-27 June 1969,

Boeing Scientific Research Lab. Document DI-82-853, p V1. ed. Yih-Ho Pao.
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o(l/f. / 2
4L v 4 + V7T
= 7 %

Viu =0

(1)

where Y is the kinematic viscosity, and
o ?
= — 4+ uw-v
i 2t ~
Instead of studying the evolution of individual Fourier modes of u and
p, which would call for more infprmation than is needed in the study of the

energy spectral distribution, we bunch the modes into two groups for the sake

of simplicity, and write

(2a)

with

(2b)

N
"
~
>
)
X
N
=
S

b

As k is taken as an independent variable in the function uQE), it remains an
. . . : ' )
independent variable in the new functions Eijand u which qlmply represent

certain sums of u(k). The integrations

nooe k. [ %)
// ol - anol v/'“éé .
o ~ kv

denote volume integrals in the wave number space, within and outside a sphere

of radius k respectively. The same notations are valid for p,
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It is to be noted that (2b) and (2¢) can also be wriften as

where 30(5) and g)(k) retain the values of 5@5) but truncated in the appro-
priate fashion as indicated by (2b) and (2¢).

As a result of such bunchings, we expect that certain intrinsic averag-
ing or randomnization will shape up a process with a more characteristic
and distinct statistical behavior, which is more suitable for physica] approxima-
tions. More specifically, we expect that the equation determining 2: wili
provide the evolution of the portion of the emergy spectrum F(k) beyaeen 0 and
k, i.e. the evolution of &
[ otk Flk)
\ o
while the equation for u will determine the transport properties of the
medium in which 2; evolves,
3. BASIC ASSUMPTIONS

We list the following assumptions:
(i) The fluid is incompressible. We apply the conditions of isptropy and homo-
geneity for the quantities R{and gj, since there exists no motion of larger
scales which may alter these conditions. For the motion xﬁ of smallerx saaleg
we assume that within the length of such small scale fluctuations, the motion

is statistically homogeneous, i.e. obeying the condition of local homogeneity.

~12-



(ii) The large scale velocity 27 varies very slowly compared to the
rapidly varying smaller scale fluctuation gj, so that an average within a
length scale comparable to 2n/k, (k = a variable wave number separating the two

motions), will not alter Ef’ but will eliminate u';

a o I'n o
U> = u’ G'>=0

(3)

where the angular brackets denoté such an average. This is referred to as thé
quasi-stationary condition.
(iii) The time development of the small scale motion gj,will depend
on its interaction with the larger scdale motion Rf under the form of a shear.
Under the Boussinesq approximation, it is assumed that such an interaction plays
a dominant role in the deyelopment of RL gnabling us to neglect the effect of
pressure fluctuation Vp' which merely randompizes the energy in all directioﬁs.
(iv) It is known that a'nOnlinear system describing a velocity u

generates & hierarchy of equations, and that its solution nec&s%itates an

uO
L%

assumption of closure. Consequently; when the V@lOCitY,E is,degowposed into
and_g' as in (2a), there entails a nonlinearity in both the equatiph for 23 and
u'. The condition (i) of a homogeneous u® helps in closing thg hierarchy in
-~ NS

o, . ° ' s 4 s . .
us but since u, and y' are coupled, it is necessary to ¢losure the hieraychy
generated by the nonlinearity in u' too. The latter nonlinearity arises from the
role of the streaming velocity u* in the Lagrangian integration of a fluid element
of velocity %:. If such a streaming velogity’p* can be gxplicitly expressed

in terms of a spectral function without its determinatiop thrqugh a higher order

equation, then the closure is achieved.
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The assumptions (i) and (ii) are generally adopted in the study of
an isotropic and homogeneous turbulence. The assumption (iii) is also used
in the Burger§}17 model. The assumption (iv) is new and is fundamental to

securing the closures.

4, STRUCTURE OF THE TRANSFER FUNCTION, AND DERIVATION OF THE EQUATION FOR THE
SPECTRAL DISTRIBUTION

By applying the average, as defined by (3}, to (1) and using the nota-
tions (2), we obtain an.equation for R? and hence 232. A subsequent sub-
traction of such an equation for Ef from (1) will yield an equation for u'.

. ~/

Thus we write them as follows:

b, oz o 'o B ' Ir ‘A
L2 ut = - wR - wuh —{upud
2 HF | v AR
a Xy (@)
and
du' ;
-2 4+ AU = - ('’ 0
i A N R s)
where
RQ —_ Noub .bx.r ‘Z‘

/ > ’ /
is a vorticity function. Similarly R/:(@“L'/%y) 2, R=R R

The coefficient o will be determined approximately in the followipg lines.

1,2

According to the Heisenberg hypothesis the equation for the energy

dissipation (4) can be written as
2 o , > O
37 4 = -0 %IR
=~V (R-R') -V R®
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1'7J. M. Burgers, in Advances in Applied Meghani;s, R, Von Mises and Th,

Von Kdrmdn. Eds. (Academic Press Inc,, New York, 1948) Vol, 1, p. 171.
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or

_I__B 2 13 / o
It follows
L 2wy = — R+ YRS
Z SF < k

= ~(v-Yv,)R’ Y = R«O//R/-

$..
We see that the dissipation of :é<252> oeccurs at a lesser rate than vR/

4

- '
i.e. at a rate (3 'le withﬁ?l. We then have

D ) -
i‘ﬁg(%% = - A"y R

= =~ & <£$’3:>

where
Ny 12
« = R oo

is the damping coefficient in (5), and

- o /
= %
RM = 1~ %R/VR 75)
approximated as a constant, will be estimated in $ectjon 8,
In (4), we have intraducbd the bar as ap average taken oyer a. length

tending to infinity, as differentiated from the average (3) taken over a length

scale 2n/k. We have neglected the terms

1 ' o o2 T —————
2 v 95 “w, v f"i / v v*© eéyzr
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As a result of the assumption (i) on homegeneity.

In arriving at (5), we have neglected the term (@/ V) %/>
under the quasi-stationary assumption (ii), buf retained the nonlinear term
(%/.V) %' embedded in d/dt. .In addition, we have neglected the pressure
effect under the assumption (iii) of Boussinesq approximation, and adopted
the approximate damping o« in (5) and (7a).

The completed system of equations (4) and (3) are nonlinear. It is
seen that the development of the energy %—F is governed by a viscous dissi~
pation vR® in (4), and by an eddy dissipation caused by thg smaller scale
fluctuations playing the role of a shear stress w b;“) )
The motions 1’5" and }\1/' are coupled through (5), in agreement with the concept

of mixing by turbulent shear, initiated by Boussinesgq.,

As a solution of (5), we find

t
/ B LLP’ ] o d(é ""'t’ ‘)
“it) = - =5 /:$é € Y (t)
“ 0 (8)

assuming }u"&/»xo, to be quasi-stationary, according tqQ assumption (ii).
In (8) we have written >§v’ =X - lé(i‘-t'), and the integration is made along
the trajectory of the small scale element g', which is transported by u, From

(8) it follows

0
o

] t
Woudy = - 2 [ ¢ W (v ()
) ’-
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Since the duration of the correlation is small, we can rgplace the upper limit
of integration by =, without altering the values pf the integrals. Further
the integral, representing an eddy vi§cosity Ve caused by small scale fluctu-
ations, can be assumed isotropic and logally homogeneous, see assumption (i);

therefore we can write for large t:

/ D’ DT -k .
(wjy =—4 286 e ¢ " T llo) W) 5,
? FDX' (o] ~ d
)
' (%a)
where \2“&'
P XT
YV = ~— T - : '
L= T dr e ) W) o)

is an eddy viscosity from small scale fluctuétions. Equation (9a) is‘a relation
between the fluctuation and the gradient of the background larger scale fiow,
through the intermediary of~ah eddy viscosity. This result is in agreement

with the Boussinesq's mixing length theory,

Finally upon subétituting(QaD into (4), we reduce (4) to

2

{

2% ue,
7 3F. '

> ),.2’

S
|

= -V Kfo + 11Q “w

& '\bu,ob'g e
= -y R - v/i < ,..,__,‘)__ Vz(%oz)

= -(V+yIR’ (10)
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with the aid of assumption of homggeneity (i).
We consider now the equilibrium range of the spectrum F(k), In this

range valid for large wave numbers, the term

Do
2
ik F
o7, Ak
is very small, therefore,
| < —
2 [dbkFE = L % ut*®
~t 4 2 %t~
= £ = yR
reducing (10) to
(V«i-’x)k’)]zp 5 & (11)

an equation similar to the equation (11) proposed by Heispanrgl’z.

5. RELATION BETWEEN THE SPECTRUM AND THE FOURIER COMPQNENT$ OF VELbCITI_ES
We write the Fourier tyansform in the space 4‘{7@ = dw d:{‘*,
8o .
_ ~plwt-ky)
&({—12() = \/d € W(w/é)
~ LY L4

~bo

!/, _ A
u(tx) = [an

o

‘ ’tv*é,’ ( ! - I« !
AR

/
where t= é—‘C/ x(e x-A . Let us form the time and space integral of

~ v o

w3t x)

)

/0({'/:5 ul(t/x') w(t x)

—
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Do ) > AN/ ",@'Q)
_fdf} [402 « Lo w (Wik) w(w i)

- 29 (] ' 1)L . Y]
x /dt/dXV _e'-l»r(m'f"«’)f-i-u(fv#é)é
T Tl (12)

Noting that

P < furw))t
/a/,l’e, = a7 5(‘«!#—:«)')

-6

and similarly for the space integral, we transform (12) to

/j,e /:5 w(t/x)- (tx)

L

= Gffan Juab)< e - 52 (s
e .

degenerating to the Parseval theorem when 1 = 0,
For the sake of conveniencg of Fourier transform, the function 5(‘[‘, X )
is supposed to be bounded within a time integral 2T and a length integral

2X, called intervals of truncatign, with

S

then (13) can be rewritten as

b - _
ol ) wly) = [dp e (o )] e 72

(14)

where the bar represents a time average and a space average Wwithin the aboye

intervals of truncation. With the special case of T = 0, we reduge to

=20~



' g

= [ fae o)

l

-

X/Z,é 474‘/30»1 '%(u/é)'m

(]
6

Il

= 2 "/QZLA Fk)

0

Fle) = fa/w 2m b oy [g(w,_g)lz as)

where

6. EDDY VISCOSITY

a) Effect of Viscous Damping in the Eddy Viscosity

In all the theories reviewed in Séction 1, the effect of viscous
damping does not enter in the eddy visgosity. In the present Section, we
shall include such an effect in the derivation of the eddy viscosity, as it
is impértant at 1arge wave numbers and is expected tp play ap essential role
in the convergence of the spepttum. |

With the aid of (14), and on agcount of the even value of the

integrand, we can rewrite (9b) as

&

_ ol
(I CLRIR CYOMON

= /:ﬂ [%,[“’/ﬁ)'L f;v . L'(k)wé,‘(é,j,r__od_r/
) g

JA >
2 2 A Llahup)o-vt]
= % j}'w {::Lé z2rb? l%(u’,{,é )] "ﬁdcq/;ﬂ(«/»t e ‘ /"
| (16)
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where u = cos 6 in the spherical polar coordinates k, 0, ¢ .

We shall first perform the integration with respect to u, giving
ko +/ ,L[L«Jw,éw/zt)v“/’r/
V/ 6¥tv/'09bx e
- Ay :
Ao Rup T — X fE]
= 2 dt — €

-~ 00 /él/(,'E

The Lagrangian time integration is yery compligate, since u depends on 7t too.

Consider first

oo ~ ‘ - O~ &[T
Pl 0*) =2 [dz Wt;”"%, ‘ fel
- &

with

W= ku*

where u* is a streaming velocity indapehdenﬁ of 1. We have

o) = [an o=y [zl sl
’ -De T T

po — T/ ALY
| 4 4o oo cale
=i 'Q}*CU*

L

¥
L a/uc.ﬁam, Efﬁttﬁg + dJLC~tZMur “ v&d‘ ;
.3 X X (17a)
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Upon inspectiﬂg (17a), we nqti¢e that the démping factor ﬁ”/&; QJ*54h)

becomes a unit function for o =O

!, I weca¥

0, For W > w¥

thus it aelects'thecontributions from the low frequencies Co<zﬁ‘, and

ff”_"; Pl i) = \

decreases monotonously with increasing « . Hence (17a) and (18a) simplify to

Pla¥m) = Plucwt, w¥k)

= 2 arctan (Wii) (17b)

T

It is to be remarked that the multiples of n/2 in the oumcﬁWw(Qﬁéy are not .

taken in order to conform the value unity of (17b) to its equivalent

Z@ /4:/7; e I s w*T _

= 7(',
o{=D T
when o = 0.
In view of the property af-gselecting low frequencies, in the Lagrangian

time integration as mentioned aboye, we can simplify (16) .te

- é;‘a 4.;;/320/20 (k)|

o0 okt -wwT—¥T|
—'—/ dz /éu. <
T kur
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I

-’%25/2/:% [w#/;w 'bi(%é)rw*—lﬁp(wf ""V()]

where ku is replaced by‘Q/*;arying slowly in time. It is to be nptedythat OOQF
still depends on k and F.

Since { is truncated, we can further write

-
7 4k re 2
Vo= EX [d | TZE p(rk) [ da) |uls k)
k “ o
Although the relation between &) and k forms a difficult nonlinear
dispersion relation, worthy of a sgparate study, it is safe to assume that
the frequency is contributed by the conyection of a scale k by a streaming

velocity u*, so that the integral
AL
fdcu-u.
0]

may encompass the major frequency contributions. Thus without much errgr,

we can replace the upper integration limit by =, giving

e[ foe f

= 7 [dk Flk) ot (et A)
k

(18c)

with the use of representation (15). It is to be reca}led that the effecf of the

viscous damping resides in f’, ags given by (17b).
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NARY
b) Relaxation Frequency &)

The relaxation frequency determines the time necessary for the energy
Fdk between k and k + dk to relax and dissipate through the cqrresponding

vorticity 2k2 Fdk. Thus we can write, in apalogy to (10),

Ww¥F = (V+&)2£ZF
| (20
By neglecting the effect of the molecular viscosity and with the use of
(18c), we can transform (20) into
“ pe
L E/acé F/e*
2k 39

yielding the solution

i
{
!
!
!
i
|

¥ (sm)t e Mz/e F/k2) on

w* = (%E)Ji k [[ZMF/éi,

Thus the streaming velocity responsible for the convection of the eddies of
wave number k in a strong interaction depends on the local behavior characterized
by F and fg The dynamics represented by (20), which des¢ribes such an inter-

action, is again based on a cascade concept, similar to that used in (10).

7. KOLMOGOROFF SOILUTION OF THE SPECTRAL DISTRIBUTION
In the inertial subrange we can neglect 'V<<ﬁé in (11), and approximate
the damping factor ?9 to unity in (18c) so that (11) simplifies to the integral

equation
~25-



T /€°[a£/e Flp* = &

(22)
with ¥ given by (21), yielding the solution
2 -5/3
F= A¢ 4 /B (23a)
with
2/3
4= (G=/3) €23b)

Although the integral equation (22) differs from that proposed gy Heisenbergl’z,

/3 obtained in (23a) is in agreement with the Kolmqgoroff7

the power law -
and Heisenbergl’2 theories. The present theory derives the transfer function
without the empirical and dimensional arguments, and determines the numerical

coefficient (23b).

8. TAIL OF THE VISCOUS SUBRANGE
In order to obtain a solution of (11) in the viscous subrange, we

differentiate (11) with respect to k giving
o oV AR’
R =& 4+ (_v+‘>f,z)——§—=:o
db

Since the viscous subrange occurs at large k, we can replace Ro by

R = Ro( &;>w ), and neglect }2<2 V reducing the differential equation to

-26-



4, 4R’

R £ 4 v = =0
dk AR

or,in terms of F, with the aid of (17b), (18¢c) and (21),

/%3{0% (F/k?) = }E (lt/;,,)%fzﬂz

(24)
where %is a cutoff function given by (17h).
Assume a solution
F = —ZE—(R/»’)Z%/—7 W('é/é»z)
(25)

with

b o= (RS

The solution
T (fy ) A7

satisfies the equation (24) when }0 is unity, and)V is a dimensionaless.

function of k/kva to be determined by the integral equation (24), which

e

reduces to
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Now by using (7), (21) and (24), we find
- ] [ -
w”%('—‘;;—tﬂ FAVAF YR
which reduces (17b) to

e
</=_’_§_._Wem(;.apy=/é’/ay ¥R

or inversely

Upon differentiating with k, we have

*—2,4,2' ___ﬁFklé %’/ 0/99

(2 ety Al T o 4)
{3’ﬂ PR %[' tan( ) /+mz/”%)7

) - 7 Pl
- 36 IR m:rw)}

For k/kv> 1, the termsybetween the brackets are negligible, simplifying to
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yielding the solution

Fogie e [- 2004

Hence (25) becomes

27
P () g [ ()]
(27)

If O.Skv is the wave number of transition from the.inertial to the
viscous subrangesls, the exponential cutoff is effective at a waye number
larger than kv, since B > 1. Hence we conclude that the viscpsity effect
in the expression (18c) for the eddy viscosity will provide a cutqff‘of the
spectrum at large k.

The exponential tail of (27) secures the conyergence of any high
order velocity derivative. Such a convergence was ahsent in the power law
K7 of the Heisenbergl’2 solution, .

For small k, the value of 8 is nearly unityf We shall make an estimate
of the value of B near k = kv + o, We write in terms of F

RY éiakk"‘f'
v, 757- = — .gE, dp
4d&k/= 3

FRPEH)] at ks /

and according to (21) and (25)

% R° o Rlh=k)
y R’ R
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1SJ. 0. Hinze, Turbulence (McGraw-Hill Book Company, Inc., New York, 1959),

Chap. 3, p. 195, formula (3-128).
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Hence for k - kv > o

B = R/RMh=ks) ¥
Thus the cutoff occurs at k = (8/3)1/4k
eut ' »’

9. COMPARISON WITH OTHER THEORIES

a. The present cascade model yields an equation (10) for the deve]opment
of the spectral distribution, the equation is similar to that proposed by
Heisenbergl’z. However, the eddy viscogity is derived in (18¢) and (21),
and takes a form at variance wifh the one prpposed by Hgisenbergl’z on a
dimensional argument. The equation (10} yields a solution (233) for the
inertial subrange, and a solution (27) for the viscous subrange. The power
law in (23a) is in agreement with the Kolmogoroff7 r Heisenbergl’2 spectrum,
The numerical constant (23b) is derived. The viscous law (27) has the

1,2 law, but we find an exponential cutoff K7 at.

5/3

appearance of Heisenberg's

k=1.3 kv' The cutoff does not follow immediately the k=

suggested by several authors4’5. If the viscous dyop occurs at k

law, as

4= 0.8 k,

H

there must exist a narrow range
< <
/?""’ . /ecwt
0.5 < é/,é? < 13

within which Heisenberg'sl’2 k—7 law should hold.
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The formula (27) gives also the numerical coeffiqient which was left undeter-

2

mined in the Heisenberg1 2 theory.

b. The eddy viscosity (18c) depends on the relaxagion frequency Qﬁ?
1/2 |

The latter has the same dimension as R If we approximate (18c) by

o~ b
% =L R fdhF
A

without altering the dimensional struéture* then the equation (11) far

the spectral equation reduces to
e ook 9
yR°y E R /acéf iy
3 n

which is equivalent to the Obukhov3 equation, y*elding algo the qumogoroff7

law in the inertial subrange.

c. The relaxation frequency'QﬁbE kp* has been determined consistently
by the cascade concept described by (20); consequently it is due to the
convection of a small scale motion by a streaming velogity u* set up by a
local cascadé, in the sense that a strong interaction should operate between
the two scales. Instead of such a strong interaction, we pmay assume a weak
interaction, so that the stréaming velocity u*_does not depend on the’ local gas-
cade, but is a measure of the strength of turbulemce at large, Under such

a circumstance, (18c) approximates to

H
S

Y, = I—u*'//‘:bé FeR
k 3 ‘e ‘ ( f‘
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reducing (10) to:

bo - 0
\7—r——7'_——/0¢f€ . )R = &
Iu¥
R
Its solution for the inertial subrange is
L L
Foaw) 67 A=n30k)"

19

and is found to be equivalent to the result of Kraichnan™~, using the approxi-

mation of stochastic direct interaction.

The method does not give a solutien for the viscous subvange.
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